12). lle centymetrów ma bok kwadratu, jeśli jego pole jest równe: a) 4900cm ^ 2 b) 0.0036m ^ 2 c) 0.0004km ^ 213). Ile centymetrów ma krawędź sześcian … u jeśli jego objętość jest równaA) 0,125m^2 b) 216 000cm^3C) 0,064m^3Proszę o szybką pomoc
do podstawowych wiadomosci o liczbach zespolonych ,rownan drugiego i trzeciego stopnia. Rownanie czwartego stopnia mozna zapisac w postaci. (x^2+ax+b) (x^2-ax+c)=x^4+px^2+qx+r. Po wymnozeniu trojmianow i porownaniu wspolczynnikow. dostajemy uklad rownan ktory mozna sprowadzic do rownania trzeciego stopnia.
1. Przypomnij sobie wszystkie wzory. Wytnij i wklej do zeszytu pod tematem lekcji. 2. Wykonaj zadania: Zadanie 1. Oblicz i uporządkuj liczby w kolejności rosnącej. Zadanie 2. Zadanie 3. Zadanie 4. OCENIANIE - Zrób zdjęcie wykonanych przykładów z zadania 1, 2,3, 4 przeskanuj i prześlij do nauczyciela wraz z podpisem - twoje imię i nazwisko.
Potęgi są skróconym zapisem wielokrotnego mnożenia elementu przez siebie. Przykłady: 3^2 = 3\cdot 3 = 9; 2^3 = 2\cdot 2 \cdot 2= 8; 5^4 = 5\cdot 5\cdot 5\cdot 5 = 625; Potęgując liczby ujemne, kierujemy się zasadą, że potęga parzysta daje wynik dodatni, a potęga nieparzysta wynik ujemny. (-3)^2 = (-3)\cdot (-3) = 9
Transkrypcja filmu video. Przekształć wyrażenie pierwiastkowe na potęgi ułamkowe i uprość. Mamy pierwiastek 4 stopnia z 5a⁴b¹². Najważniejsze to wiedzieć, że pierwiastek 4 stopnia z czegoś równa się temu czemuś do potęgi ¼. Ogólnie: pierwiastek n-tego stopnia jest równy potędze ¹/n. Zastosujmy to tutaj. Pierwiastek 4
Sprowadź ułamki do wspólnego mianownika. Postaraj się, aby był on jak najmniejszy. a)2/5 i 5/6b) 5/8 i 7/24c) 3/4 i 7/10
Kolejnym, nieco szybszym sposobem na to jak obliczyć potęgę na kalkulatorze zwykłym jest wybranie na klawiaturze liczby równej podstawie potęgi i wciśnięciu znaku równa się tyle razy, ile równy jest wykładnik potęgi. Np. 7 8 obliczymy wybierając na kalkulatorze liczbę 7 i wciskając osiem razy znak równa się.
Pierwiastek (parzystego stopnia) z liczby ujemnej jest tzw. liczbą urojoną i zapisujemy go za pomocą jednostki urojonej i. Liczbę i definiujemy tak: i^2=-1. Liczba zespolona może składać się tylko z części rzeczywistej lub tylko z części urojonej. W szczególności każda liczba rzeczywista jest liczbą zespoloną. wzór de Moivre'a.
2. Gdy od liczby 3 pierwsiatki z 32 odejmiemy liczbe 4 pierwiastki z 18, to otrzymamy? 3. Iloczynem liczb 2 pierwiastki z 2 i 8 pierwiastkow z ośmiu jest: 8. Wartością wyrażenia (1/3)do potęgi10 * (1/2) do potęgi10 : (1/6) do potęgi13 jest: 10. wartością wyrażenia 3pierwiastk. (27pierwiastk. - 3pierwsiatk.) jest:
Ile wynosi 2 pierwiastki z 7 podniesione do potęgi drugiej ? 2010-10-28 15:17:45; Ile wynosi przekątna kwadratu o boku 4 pierwiastki z 2? 2013-02-26 19:55:15;
3NvD0KN. Home NaukiMatematyka Paciowa zapytał(a) o 21:35 Liczba 4 pierwiastki z 2 pierwiastków z 2 zapisana w postaci potęgi to 2 do... ? powinno wyjść 2 do potęgi 2 i 3/4 To pytanie ma już najlepszą odpowiedź, jeśli znasz lepszą możesz ją dodać 1 ocena Najlepsza odp: 100% 0 0 Odpowiedz Najlepsza odpowiedź odpowiedział(a) o 21:38: 4√(2√2) = 2^2 * √(√8) = 2^2 * √(2^(3/2)) = 2^2 * (2^(3/2))^(1/2) = 2^2 * 2^(3/4) = 2^(2 + 3/4) Uważasz, że znasz lepszą odpowiedź? lub
aerialsky Użytkownik Posty: 2 Rejestracja: 21 wrz 2009, o 18:42 Płeć: Mężczyzna Lokalizacja: Koźle Potęgowanie pierwiastków ... Witajcie, Na jakiej zasadzie potęguje się te pierwiastki? 2\(\displaystyle{ \sqrt{4}}\) \(\displaystyle{ ^{3}}\) (2 pierwiastków z czterech do potęgi trzeciej) \(\displaystyle{ \sqrt{8}}\) \(\displaystyle{ ^{3}}\) (8 pierwiastków do potęgi trzeciej) tim Użytkownik Posty: 533 Rejestracja: 9 maja 2009, o 18:12 Płeć: Mężczyzna Lokalizacja: Gdynia Podziękował: 3 razy Pomógł: 77 razy Potęgowanie pierwiastków ... Post autor: tim » 21 wrz 2009, o 19:02 \(\displaystyle{ \sqrt{8} \cdot \sqrt{8} \cdot \sqrt{8}= 8 \sqrt{8}}\) aerialsky Użytkownik Posty: 2 Rejestracja: 21 wrz 2009, o 18:42 Płeć: Mężczyzna Lokalizacja: Koźle Potęgowanie pierwiastków ... Post autor: aerialsky » 21 wrz 2009, o 20:42 a w tym pierwszym poprawnie powinno wyjść \(\displaystyle{ 8\sqrt{8} ?}\) Ostatnio zmieniony 21 wrz 2009, o 20:48 przez Rogal, łącznie zmieniany 1 raz. Powód: Czegoś brakowało... tim Użytkownik Posty: 533 Rejestracja: 9 maja 2009, o 18:12 Płeć: Mężczyzna Lokalizacja: Gdynia Podziękował: 3 razy Pomógł: 77 razy Potęgowanie pierwiastków ... Post autor: tim » 21 wrz 2009, o 21:30 \(\displaystyle{ A propos: \sqrt{4}=2}\)
Mavcus Użytkownik Posty: 4 Rejestracja: 2 mar 2013, o 20:44 Płeć: Mężczyzna Lokalizacja: Polska Jak obliczać wyrażenie podniesione do potęgi pierwiastek z 2 Oblicz \(\displaystyle{ (2- \sqrt{3}) ^{ \sqrt{2} } (2+ \sqrt{3}) ^{ \sqrt{2} }}\) Chcę żeby ktoś wytłumaczył mi to zadanie(nie rozwiązał :] ). Szukałem go w internecie ale nie udało mi się znaleźć. Konkretnie moim problemem jest ta potęga, nie mam pojęcia jak to zacząć. Pozdrawiam Ostatnio zmieniony 2 mar 2013, o 20:59 przez Jan Kraszewski, łącznie zmieniany 1 raz. Powód: Temat umieszczony w złym dziale. Mavcus Użytkownik Posty: 4 Rejestracja: 2 mar 2013, o 20:44 Płeć: Mężczyzna Lokalizacja: Polska Jak obliczać wyrażenie podniesione do potęgi pierwiastek z 2 Post autor: Mavcus » 2 mar 2013, o 21:03 Dziękuję za szybką odp. Chodziło mi jednak o to jak wyliczyć liczbę np. \(\displaystyle{ 3 ^{ \sqrt{3} }}\)-- 2 mar 2013, o 21:06 --Jan Kraszewski pisze:\(\displaystyle{ a^c\cdot b^c=(a\cdot b)^c}\) JK Z tego co pan napisał wnioskuję, że to \(\displaystyle{ (2- \sqrt{3}) ^{ \sqrt{2} } (2+ \sqrt{3}) ^{ \sqrt{2} }}\) można zapisać jako \(\displaystyle{ ((2- \sqrt{3})(2+ \sqrt{3})) ^{ \sqrt{2} }}\). yorgin Użytkownik Posty: 12762 Rejestracja: 14 paź 2006, o 12:09 Płeć: Mężczyzna Lokalizacja: Kraków Podziękował: 17 razy Pomógł: 3440 razy Jak obliczać wyrażenie podniesione do potęgi pierwiastek z 2 Post autor: yorgin » 2 mar 2013, o 21:16 Potęgę \(\displaystyle{ 3^\sqrt{3}}\) definiuje się jako granicę \(\displaystyle{ \lim\limits_{n\to\infty}3^{a_n}}\) gdzie \(\displaystyle{ a_n}\) jest ciągiem liczb wymiernych zbieżnym do \(\displaystyle{ \sqrt{3}}\). Ta wartość nie jest wyliczalna "ręcznie". Mavcus Użytkownik Posty: 4 Rejestracja: 2 mar 2013, o 20:44 Płeć: Mężczyzna Lokalizacja: Polska Jak obliczać wyrażenie podniesione do potęgi pierwiastek z 2 Post autor: Mavcus » 2 mar 2013, o 21:26 W takim razie patrząc na zadanie które podałem wystarczy, że wymnożę nawiasy i zostawię tą potęgę poza nawiasem, tak? bartek118 Użytkownik Posty: 5974 Rejestracja: 28 lut 2010, o 19:45 Płeć: Mężczyzna Lokalizacja: Toruń Podziękował: 15 razy Pomógł: 1251 razy Jak obliczać wyrażenie podniesione do potęgi pierwiastek z 2 Post autor: bartek118 » 2 mar 2013, o 21:41 piasek101 pisze:tak Nie. Trzeba jeszcze wykonać działania: \(\displaystyle{ ((2- \sqrt{3})(2+ \sqrt{3})) ^{ \sqrt{2} } = (4-3) ^{ \sqrt{2} } = 1^{ \sqrt{2} } = 1}\) Mavcus Użytkownik Posty: 4 Rejestracja: 2 mar 2013, o 20:44 Płeć: Mężczyzna Lokalizacja: Polska Jak obliczać wyrażenie podniesione do potęgi pierwiastek z 2 Post autor: Mavcus » 2 mar 2013, o 23:23 piasek101 pisze:gotowizna nie jest moją specjalnością Jakbyś przeczytał mój temat to byś wiedział, że nie proszę o gotowca... Uczę się do matury dodatkowo robiąc zadania. To nie jest jakieś zadanie domowe, którego nie chce mi się zrobić bo lepiej wrzucić na neta. Dziękuje, za pomoc normalnym ludziom. piasek101 Użytkownik Posty: 23388 Rejestracja: 8 kwie 2008, o 22:04 Płeć: Mężczyzna Lokalizacja: piaski Podziękował: 1 raz Pomógł: 3230 razy Jak obliczać wyrażenie podniesione do potęgi pierwiastek z 2 Post autor: piasek101 » 3 mar 2013, o 17:55 Mavcus pisze:piasek101 pisze:gotowizna nie jest moją specjalnością Jakbyś przeczytał mój temat to byś wiedział, że nie proszę o gotowca... No to właśnie go nie napisałem. I masz pretensje ?
W poprzednich częściach zajmowaliśmy się potęgowaniem i pierwiastkowaniem liczb. Teraz, dzięki umiejętności zapisywania pierwiastka za pomocą potęgi, połączymy oba te działania. W jaki sposób? Na początku spójrz na przykład. Weźmy liczbę $(\sqrt{16})^{2}$. Chcemy ją jakoś policzyć. Jak? Są na to 2 sposoby: Sposób I. Korzystając z własności pierwiastków: $$(\sqrt{16})^{2}=\sqrt{16}\cdot\sqrt{16} = \sqrt{16\cdot16} = \sqrt{256}= 16$$ Ten mechanizm był wytłumaczony tutaj i tutaj. Sposób II. Zamieniamy liczbę $\sqrt{16}$ na potęgę o wykładniku wymiernym, tzn.: $$(\sqrt{16})^{2} = \left(16^{\frac{1}{2}}\right)^2=16^{\frac{1}{2}\cdot 2} = 16$$ Konstrukcja $(\sqrt{a})^{2}$ często pojawia się w różnych zadaniach, zapamiętaj więc, że $(\sqrt{a})^{2}=a$. Zachodzi to również dla wyższych pierwiastków i potęg, np. $(\sqrt[3]{a})^{3}=a$, $~(\sqrt[4]{a})^{4}=a$, należy pamiętać jednak o tym, żeby stopień pierwiastka był równy wykładnikowi potęgi. Przykłady. $$(4\sqrt{2})^{2}\stackrel{\text{I}}{=} (\sqrt{16\cdot2})^{2} = (\sqrt{32})^{2} = 32$$ $$(4\sqrt{2})^{2}= 4^{2}\cdot(\sqrt{2})^{2} \stackrel{\text{II}}{=} 16\cdot2 = 32$$ $$(\sqrt{7})^{3}\stackrel{\text{I}}{=} \sqrt{7\cdot7\cdot7} = \sqrt{7^{2}}\cdot\sqrt{7} = 7\sqrt{7}$$ Zadania Zadanie 1. Liczba $\sqrt[3]{3\sqrt{3}}$ jest równa $$A. \sqrt[6]{3},~~B. \sqrt[4]{3},~~C. \sqrt[3]{3},~~ D. \sqrt{3}$$ Korzystając ze wzorów na działaniach na potęgach i pierwiastkach mamy: $$\sqrt[3]{3\sqrt{3}} = \sqrt[3]{3\cdot3^{\frac{1}{2}}}=\sqrt[3]{3^{1+\frac{1}{2}}}=\sqrt[3]{3^\frac{3}{2}}=\left(3^{\frac{3}{2}}\right)^{\frac{1}{3}}=3^{\frac{3}{2}\cdot\frac{1}{3}}=3^{\frac{1}{2}}=\sqrt{3}$$ Odpowiedź: D. Zadanie 2. Liczba $3^{\frac{8}{3}}\cdot\sqrt[3]{9^{2}}$ jest równa $$A. 3^{3},~~B. 3^{\frac{32}{9}},~~C. 3^{4},~~ D. 3^{5}$$ $$3^{\frac{8}{3}}\cdot\sqrt[3]{9^{2}}=3^{\frac{8}{3}}\cdot\sqrt[3]{(3^{2})^{2}}=3^{\frac{8}{3}}\cdot\sqrt[3]{3^{4}}=3^{\frac{8}{3}}\cdot3^{\frac{4}{3}}=3^{\frac{8+4}{3}}=3^{\frac{12}{3}}=3^{4}$$ Odpowiedź: C. Zadanie 3. Liczba $7^{\frac{4}{3}}\cdot\sqrt[3]{7^{5}}$ jest równa $$A. 7^{\frac{4}{5}},~~B. 7^{3},~~C. 7^{\frac{20}{9}},~~ D. 7^{2}$$ $$7^{\frac{4}{3}}\cdot\sqrt[3]{7^{5}}=7^{\frac{4}{3}}\cdot7^{\frac{5}{3}}=7^{\frac{4+5}{3}}=7^{\frac{9}{3}}=7^{3}$$ Odpowiedź: B. Zadanie 4. Oblicz: $(\sqrt{2})^{2},~~(\sqrt{17})^{4},~~(\sqrt{15})^{2},~~(\sqrt[3]{4})^{3},~~(\sqrt{18})^{4},~~(\sqrt{9})^{5},~~(\sqrt[5]{32})^{3},~~(\sqrt[4]{16})^{5},~~(\sqrt{16})^{5}$ 1. $$(\sqrt{2})^{2} = 2$$2. $$(\sqrt{17})^{4} = ({17}^\frac{1}{2})^{4}=17^{\frac{1}{2}\cdot4}= 17^{2} = 289$$ 3. $$(\sqrt{15})^{2} = 15$$ 4. $$(\sqrt[3]{4})^{3} = 4$$ 5. $$(\sqrt{18})^{4}=({18}^\frac{1}{2})^{4}= 18^{\frac{4}{2}} = 18^{2} = 324$$ 6. $$(\sqrt{9})^{5} = \sqrt{9\cdot9\cdot9\cdot9\cdot9}=\sqrt{9\cdot9}\cdot\sqrt{9\cdot9}\cdot\sqrt{9} = 9\cdot9\cdot\sqrt{9} = 81\sqrt{9}$$ 7. $$(\sqrt[5]{32})^{3} = (\sqrt[5]{2^{5}})^{3} = 2^{3} = 8$$ 8. $$(\sqrt[4]{16})^{5} = (\sqrt[4]{2^{4}})^{5} = 2^{5} = 32$$ 9. $$(\sqrt{16})^{5} = 4^{5} = 1024$$